
QUESTÃO 136

De acordo com a Lei Universal da Gravitação, proposta por Isaac Newton, a intensidade da força gravitacional F que a Terra exerce sobre um satélite em órbita circular é proporcional à massa m do satélite e inversamente proporcional ao quadrado do raio r da órbita, ou seja,

$$F = \frac{km}{r^2}$$

No plano cartesiano, três satélites, A, B e C, estão representados, cada um, por um ponto (m; r) cujas coordenadas são, respectivamente, a massa do satélite e o raio da sua órbita em torno da Terra.

Com base nas posições relativas dos pontos no gráfico, deseja-se comparar as intensidades F_A , F_B e F_C da força gravitacional que a Terra exerce sobre os satélites A, B e C, respectivamente.

As intensidades $F_{\scriptscriptstyle A}$, $F_{\scriptscriptstyle B}$ e $F_{\scriptscriptstyle C}$ expressas no gráfico satisfazem a relação

$$\mathbf{G} \quad \boldsymbol{F}_{A} = \boldsymbol{F}_{B} < \boldsymbol{F}_{C}$$

$$\bullet \quad F_{A} < F_{B} < F_{C}$$

$$\bullet \quad F_A < F_C < F_B$$

Assunto: Razão e proporção

Considere os pares ordenados A (m_1, r_1) , B (m_2, r_1) e C (m_1, r_2) , com $m_1 < m_2$ e $r_1 < r_2$. Com isso, temos que:

$$F_A = \frac{k \cdot m_1}{r_1^2}$$

$$F_B = \frac{k \cdot m_2}{r_1^2}$$

$$F_{_{C}} = \frac{k \;.\; m_{_{1}}}{{r_{_{2}}}^2}$$

- Como $m_1 < m_2$, temos que $F_B > F_A$.
- Como r₁ < r₂, temos F_C < F_A.
 Logo, F_C < F_A < F_B.

Item E